Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal.

نویسندگان

  • Sanghyuk Park
  • Oh-Hoon Kwon
  • Sehoon Kim
  • Sangwoo Park
  • Moon-Gun Choi
  • Myoungsik Cha
  • Soo Young Park
  • Du-Jeon Jang
چکیده

We have synthesized a novel class of imidazole-based excited-state intramolecular proton-transfer (ESIPT) materials, i.e., hydroxy-substituted tetraphenylimidazole (HPI) and its derivative HPI-Ac, which formed large single crystals exhibiting intense blue fluorescence and amplified spontaneous emission (ASE). Transparent, clear, and well-defined fluorescent single crystals of HPI-Ac as large as 20 mm x 25 mm x 5 mm were easily grown from its dilute solution. From the X-ray crystallographic analysis and semiempirical molecular orbital calculation, it was deduced that the four phenyl groups substituted into the imidazole ring of HPI and HPI-Ac allowed the crystals free from concentration quenching of fluorescence by limiting the excessive tight-stacking responsible for intermolecular vibrational coupling and relevant nonradiative relaxation. Fluorescence spectral narrowing and efficient ASE were observed in the HPI-Ac single crystal even at low excitation levels attributed to the intrinsic four-level ESIPT photocycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategic emission color tuning of highly fluorescent imidazole-based excited-state intramolecular proton transfer molecules.

Highly fluorescent molecules harnessing the excited state intramolecular proton transfer (ESIPT) process are promising for a new generation of displays and light sources because they can offer very unique and novel optoelectronic properties which are different from those of conventional fluorescent dyes. To realize innovative ESIPT devices comprising full emission colors over the whole visible ...

متن کامل

Synthesis, X-ray Structure, Spectroscopic Properties and DFT Studies of a Novel Schiff Base

A series of Schiff bases, salicylideneaniline derivatives 1-4, was synthesized under mild conditions and characterized by 1H NMR, HRMS, UV-Vis and fluorescence spectra, and single-crystal X-ray diffraction. In solid and aprotic solvents 1-4 exist mainly as E conformers that possess an intramolecular six-membered-ring hydrogen bond. A weak intramolecular C-H···F hydrogen bond is also observed in...

متن کامل

Synthesis, Crystal Structure, Spectroscopic Properties, and DFT Studies of 7,9-Dibromobenzo[h]quinolin-10-ol

7,9-Dibromobenzo[h]quinolin-10-ol (1), a benzo[h]quinolin-10-ol derivative, was synthesized and characterized by single-crystal X-ray diffraction. The crystal belongs to monoclinic space group P21/n, with a = 3.9573(4), b = 18.0416(18), c = 15.8210(16) Å, α = 90◦, β = 96.139(3)◦, and γ = 90◦. Compound 1 exhibits an intramolecular six-membered-ring hydrogen bond, from which excited-state intramo...

متن کامل

Excited-State Intramolecular Proton Transfer and Rotamerism of 2-(2′-hydroxyvinyl)benzimidazole and 2-(2′-hydroxyphenyl)imidazole

The intramolecular proton transfer of 2-(2′-hydroxyvinyl)benzimidazole (HVBI) and 2-(2′-hydroxyphenyl)imidazole (HPI) in the ground state and in the 1ππ*, 1nπ*, and 3ππ* excited states has been studied at the HF/CIS/D95** level of theory. Their rotamerism reaction in the ground and 1ππ* excited states has been also analyzed. These systems are two different fragments of 2-(2′-hydroxyphenyl)benzi...

متن کامل

Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of a bis(benzoxazole) derivative.

A bis(benzoxazole) derivative with metal-chelating ligand (DPA), Zinhbo-1, exhibits a large fluorescence turn-on effect (up to 10-fold) upon zinc-binding. The metal chelation enables excited state intramolecular proton transfer (ESIPT), giving an additional emission band in the near-IR region (approximately 710 nm) with a large Stokes shift (ca. 230 nm).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 28  شماره 

صفحات  -

تاریخ انتشار 2005